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Abstract: The MgTiTa2O8 ceramics were fabricated by a conventional solid-state 

method, and their microwave dielectric properties were reported for the first time. The 

MgTiTa2O8 ceramics were well sintered over the temperature range (1150 - 1300 °C), 

achieving the optimized density (~ 95%) at 1225 °C. X-ray diffraction and its 

Rietveld refinement results confirmed that MgTiTa2O8 ceramics crystallized into a 

trirutile-type structure with space group P42/mnm (136). The MgTiTa2O8 ceramic 

sintered at 1225 °C exhibited the optimized dielectric properties with relative 

permittivity of 41.6, Q×f value of 30,000 GHz (Resonant frequency = 7.6 GHz), and 

τf value of +103.9 ppm/°C.  

Keywords: A. Sintering; B. Microstructure-final; C. Dielectric properties; D. 
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1 Introduction 

To meet the increasing need for the miniaturization of microwave devices and their 

applications in the 5G communication systems, it is strongly desired to develop 

high-performance microwave dielectric materials with a middle-to-high permittivity 
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(εr), a high quality factor (Q×f) and a near-zero temperature coefficient of resonant 

frequency (τf) [1]. In regard to the middle-permittivity microwave dielectric materials, 

abundant early researches focused on the systems BaTi4O9 [2], Ba2Ti9O20 [3] and (Zr, 

Sn)TiO4 [4], which achieved near-zero temperature coefficient of resonant frequency 

and high dielectric constant (εr ≈ 40). Nevertheless, relatively lower Q×f values 

(<10,000 GHz) are quite hard to fulfil the increasing demand for high-quality 

microwave devices with lower energy loss and higher selectivity [5]. 

Recently, the ATiNb2O8 (A = Mg2+, Zn2+, Cu2+, Co2+, Ni2+) family has gained much 

attention due to their high dielectric constant (εr > 30) and low dielectric loss. This 

family was reported to possess two different crystalline structures: orthorhombic 

ixiolite structure for A = Mg2+ and Zn2+ [6-9] and tetragonal rutile structure for A = 

Cu2+, Co2+ and Ni2+ [8, 10-14]. The transformation of phase structures induced by 

A-site ionic substitution brought significant impacts on their microwave dielectric 

properties. The ixiolite-structured ceramics [6-9] exhibited the permittivity of 33.8 ~ 

44.4 and negative τf values of -19.2 ~ -75.8 ppm/°C, while the rutile-structured 

ceramics [8, 10-14] showed higher permittivity of 56.8 ~ 71.2 and positive τf values 

of +49.2 ~ +223.2 ppm/°C. The increased permittivity aroused from the high 

structural coefficient C21 of rutile structure [15], and the change of τf values may be 

accounted by the distortion of (A-O) oxygen octahedron originating from the phase 

transition according to previous researches involving systems BiNbO4 [16], 

(Zn1/3Nb2/3)0.4(Ti1-xSnx)0.6O2 (0.15 ≤ x ≤ 0.3) [17] and (Zn1/3B2/3
5+)xTi1-xO2 (B = 

Nb5+, Ta5+) ( 0.4 ≤ x ≤ 0.7) [18]. For the Q×f values, the change was not significant, 
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all ranging from 10,000 to 70,000 for most of these two kinds of ceramics. For a 

special case, among this family, the ZnTiNb2O8 ceramic displayed outstanding 

microwave dielectric properties (εr = 37.4, Q×f =194,000 GHz and τf = -58 ppm/°C) 

[8], however, as far as we know, nobody afterwards repeated the similar results. 

Furthermore, J. H. Park et al. [19] prepared the ZnTiTa2O8 ceramics with trirutile-type 

structure and investigated their dielectric properties: εr ~ 46.2, Q×f ~ 36,700 GHz and 

τf ~ +74 ppm/°C. One may wonder whether the ATiTa2O8  (A = Mg2+, Cu2+, Co2+, 

Ni2+) family would follow the similar phenomenon as ATiNb2O8
 family, which 

deserves further research. Like ZnTiTa2O8，the MgTiTa2O8 ceramic also exhibited the 

trirutile-type structure, with metal cations Mg2+/Ti4+/Ta5+ in order arrangement, 

reported by Nobuhiro Kumada [20], however, to our best knowledge, its microwave 

dielectric properties have not been reported yet. 

In this work, the MgTiTa2O8 ceramics were prepared, and their sinterability, phase 

structure, microstructure and microwave dielectric properties were investigated. 

 

2 Experiments 

The MgTiTa2O8 ceramics were prepared by the solid-state method [21]. Firstly, the 

raw materials MgO (99.99%), TiO2 (99.99%) and Ta2O5 (99.99%) with molar ratio of 

1: 1: 1 were mixed by ball milling for 12 h with anhydrous alcohol as medium. 

Secondly, the obtained precursor mixtures were pre-calcined at 950 °C for 3 h. Then, 

the as-calcined powders were ball milled again for 12 h. After being dried at 60 °C 

overnight, the powders were granulated, screened by a 120-mesh sieve, and then 
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pressed into cylindrical pellets with diameter and thickness of about 10 mm and 5 mm. 

Finally, the compacted green pellets were sintered in air from 1150 °C to 1300 °C for 

4 h at the heating rate of 2 °C/min. 

The phase structural analysis of sintered specimens was conducted by the X-ray 

diffraction (XRD, Rigaku D/MAX2550, Tokyo, Japan) using Cu-Kα radiation. The 

microstructure was collected with the scanning electron microscope (FEI Company, 

Eindhoven) equipped with energy dispersive X-ray spectroscopy (EDS) . Microwave 

dielectric properties of sintered samples were acquired by the Hakki-Coleman method 

[22-23] using a network analyzer (ZVB20, Rohde & Schwarz, Munich, Germany). 

The temperature coefficients of resonant frequency (τf) were determined using the 

formula, τf = (f2-f1)×106/[f1×(T2-T1)], where f1 and f2 are the TE01σ  resonant 

frequency of samples at 25 °C and 80 °C, respectively. 

3 Result and Discussions 

The phase structure of as-sintered ceramics was identified by XRD. As displayed in 

Fig. 1(a), the patterns of all samples sintered at temperatures from 1150 °C to 1300 °C 

exhibit the consistent reflections, indicating the same phase composition. It was found 

that no PDF card could be found to match the diffraction peaks in the latest Inorganic 

Crystal Structure Database. In the reference [20], MgTiTa2O8 was revealed to possess 

trirutile-type structure with space group of P42/mnm (136), based on which the 

simulated XRD pattern was calculated (Fig. 1(a)). It is clear that all reflections for 

every sample could be completely indexed without any additional phase. Rietveld 
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XRD refinement was carried out on the ceramic sintered at 1300 °C by the Fullprof 

software, in which the trirutile-type MgTiTa2O8 was chosen as the simulation model, 

as seen in Fig. 1(b). Results show that the calculated pattern could fit well to the 

experimental data with acceptable Rp = 5.13%, Rwp = 7.79%, Rexp = 2.92% and χ2 = 

7.13%, which further revealed that the specimen crystallized in a tetragonal trirutile 

structure with a = 4.6894 Å, b = 4.6894 Å, c = 9.1385 Å, α = β = γ = 90°. The inset of 

Fig. 1(b) displays the trirutile structure for MgTiTa2O8, where the metal cations 

Mg2+/Ti4+/Ta5+ are arranged in order with M1 and M2 sites occupied by 

(Mg0.39Ti0.39Ta0.22) and (Mg0.18Ti0.18Ta0.64) [20]. 

Fig. 2 shows the SEM images of the MgTiTa2O8 ceramics sintered from 1150 °C to 

1300 °C for 4 h. As observed in Fig. 2(a), the microstructure ceramic sintered at 

1150 °C exhibits more pores and smaller grain size, about 2.7 µm in average size. 

When the temperature increased to 1200 °C, the grain size increased to around 5.8 µm 

and the pores were almost eliminated. For the sample sintered at 1225 °C, the dense 

and uniform microstructure were achieved, which would, in general, benefit for 

excellent microwave dielectric properties [24]. However, the grain size grew rapidly 

when the temperature was above 1225 °C due to the over-sintering of the specimens 

[25]. The temperature-dependence of average grain size shown in Fig.2(f) indicates 

the linear growth trend as the sintering temperature increases. And there is only one 

kind of grains in terms of microstructure in all samples, agreeing with the nature of 

pure phase. In order to identify the composition of the phase, the EDS analysis was 

conducted on the grain marked as A, seen in the inset of Fig.2(c). Results show that 
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the atomic ratio of Mg/Ti/Ta/O ions were approximately to be 1:0.98:2.1:7.0, which 

further confirmed the MgTiTa2O8 phase. 

Fig. 3 presents the variations of apparent density, εr, Q×f, and τf value of MgTiTa2O8 

ceramics as a function of the sintering temperature. As observed in Fig. 3(a), the 

apparent densities initially increased with increasing temperature, reached the 

maximum value (6.59 g/cm3) at 1225 °C, and then decreased slightly, which is in 

agreement with the change of microstructures in Fig. 2. The over-sintering behavior 

of specimens at high temperatures may account for the slight decrease in bulk density 

[25]. It is noted that the permittivity εr and Q×f values show the same variation 

tendency, that is, firstly increasing up to the optimized values (εr ~ 41.6, Q×f ~ 30,000 

GHz, Resonant frequency = 7.6 GHz) at 1225 °C and then slightly decreasing with 

the sintering temperature. This phenomenon indicates the main influence of remaining 

pores for microwave dielectric properties in a fixed material system [26]. The 

corrected permittivity values εcorr with pores effects excluded were achieved, shown in 

Fig.3(a), according to the correction formula εcorr = εmeas(1+1.5P) [27], where εmeas and 

P represented the measured permittivity and porosity values, respectively. The results 

exhibit that the εcorr kept almost constant (around 42.4) as the temperature increases, 

larger than the measured permittivity εr, quite agreeing with the theoretical value 

(around 42.2) calculated by the Clausius-Mossotti relationship [28]. As for the τf , the 

value lied in +102~ +112 ppm/°C. Compared with the microwave dielectric properties 

of some ixiolite or rutile-structured ceramics (list in Table 1), one can find that 

MgTiTa2O8 ceramics reported here exhibited a quite high positive τf value (~ +104 
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ppm/°C), which would impede its practical application. To adjust the τf to near zero 

will be conducted in the subsequent work.  

 

Table 1 Summarized microwave dielectric properties of ATiB2O8 (A: Mg2+, Zn2+, Ni2+, 

Co2+, Cu2+; B: Nb5+, Ta5+) ceramics 

 

 

 

4 Conclusions 

In this work, novel microwave dielectric ceramics MgTiTa2O8 were prepared by the 

Materials S.T. (°C) rε  ƒτ (ppm/°C) Q×ƒ  (GHz) Crystal Structure Ref 

ZnTiNb2O8 1100 37.4 -58 194000 ixiolite [8] 

ZnTiNb2O8 1100 34.3 -52 42500 ixiolite [29] 

ZnTiNb2O8 1100 34.4 -47.94 56900 ixiolite [9] 

MgTiNb2O8 1300 44.36 -41.7 13600 ixiolite [6] 

CuTiNb2O8 960 71.2 +49.2 11000 rutile [11] 

CoTiNb2O8 1080 64.7 +202 12141 rutile [12] 

CoTiNb2O8 1200 64 +223.2 65300 rutile [8] 

NiTiNb2O8 1140 60.6 +76.6 70100 rutile [14] 

NiTiNb2O8 1160 56.8 +79.1 21100 rutile [13] 

ZnTiTa2O8 1250 46.2 +74 36700 trirutile [19] 

MgTiTa2O8 1225 41.6 +103.9 30000 trirutile This work 
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solid-state reaction method. The crystal structure, sintered behavior and microwave 

dielectric properties of MgTiTa2O8 ceramics have been studied. The MgTiTa2O8 

ceramics showed a trirutile-type structure at sintering temperatures (1150-1300 °C), in 

which the cations were orderly arranged as (Mg0.39Ti0.39Ta0.22) and (Mg0.18Ti0.18Ta0.64) 

at two crystallographic sites 2a and 4f. At 1225 °C, the ceramics possessed the highest 

density and exhibited excellent microwave dielectric properties with a εr value of 41.6, 

Q×ƒvalue of 30,000 GHz andƒτ value of +103.9 ppm/°C, which would make these 

ceramics promising for application in microwave components.  
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Fig. 1 (a) XRD patterns of MgTiTa2O8 ceramics sintered from 1150 °C to 1300 °C for 

4 h. (b) Rietveld refinement pattern of XRD for the MgTiTa2O8 ceramic sintered at 

1300 °C for 4 h. 

Fig. 2 SEM images of MgTiTa2O8 ceramics sintered at: (a) 1150 °C, (b) 1200 °C, (c) 

1225 °C, (d) 1250 °C, and (e) 1300 °C. (f) The temperature dependence of average 

size of ceramic grains. The inset of Fig. 2(c) is the EDS spectrum of grain A. 

Fig. 3 Apparent density and microwave dielectric properties of the MgTiTa2O8 

ceramics sintered at different temperatures. 

Table 1 Summarized microwave dielectric properties of ATiB2O8 (A: Mg2+, Zn2+, Ni2+, 

Co2+, Cu2+; B: Nb5+, Ta5+) ceramics 

 








